Using SARIMA Modeling and Forecasting of Metrological Parameters: A Conceptual Framework
Abstract
Objective: The current study aims to predict the metrological factor of temperature in the region of Karachi
Methodology: using the Seasonal Auto-Regressive Integrated Moving Average (SARIMA) model. Daily maximum and minimum temperature data from the region from 1st January, 2012 to 31st December, 2022 using as training data for the model. These datasets are clean and modify to obtain monthly averages of the maximum and minimum temperature data for the region. These datasets using for the model development. The two datasets pass through time series analysis separately and best fitted models are developing for both.
Finding: The study shows the presence of seasonality in the temperature data alongside the presence of a growing mean in the minimum and maximum temperature dataset, signifying global warming over the past decade.
Implications: These results will help in future studies regarding the variations in temperature in Karachi and in developing strategies to accommodate for such variations in the region
Downloads
Article Analytics Summary
References
Ahmed, I., Seadawy, A. R., & Lu, D. (2019). M-shaped rational solitons and their interaction with kink waves in the Fokas–Lenells equation. Physica Scripta, 94(5), 055205. DOI: https://doi.org/10.1088/1402-4896/ab0455
Akhtar, M., Zhao, Y., Gao, G., Gulzar, Q., & Hussain, A. (2022). Assessment of spatiotemporal variations of ecosystem service values and hotspots in a dryland: A case‐study in Pakistan. Land Degradation & Development, 33(9), 1383-1397. DOI: https://doi.org/10.1002/ldr.4245
Ali, S., Kiani, R. S., Reboita, M. S., Dan, L., Eum, H. I., Cho, J., ... & Shreshta, M. L. (2021). Identifying hotspots cities vulnerable to climate change in Pakistan under CMIP5 climate projections. International Journal of Climatology, 41(1), 559-581. DOI: https://doi.org/10.1002/joc.6638
Amjad, M., Khan, A., Fatima, K., Ajaz, O., Ali, S., & Main, K. (2022). Analysis of temperature variability, trends and prediction in the Karachi Region of Pakistan using ARIMA models. Atmosphere, 14(1), 88. DOI: https://doi.org/10.3390/atmos14010088
Burhan, Ahmad., Shaukat, Ali., Tahir, Khan., Shabehul, Hasson., Syed, Ahsan, Ali, Bukhari. (2021). Simulating the Urban Heat Island Augmented with a Heat Wave Episode Using ICTP RegCM4.7 in a Mega-Urban Structure of Karachi, Pakistan. doi: 10.22115/SCCE.2021.237606.1243
Burney, S. A., Barakzai, M. A. K., & James, S. E. (2017). Forecasting monthly maximum temperature of Karachi city using time series analysis. Pakistan Journal of Engineering Technology & Science, 7(2).
Chatfield, C., & Xing, H. (2019). The analysis of time series: an introduction with R. Chapman and hall/CRC. DOI: https://doi.org/10.1201/9781351259446
Hafeez, M. A., Bashier, O., Mustafa, G., Hussian, K., Shazad, M., & Waheed, A. MODELING AND FORECASTING OF MONTHLY AVERAGE MAXIMUM SURFACE AIR TEMPERATE IN MULTAN USING SEASONAL ARIMA.
Hansen, B. B., Pedersen, Å. Ø., Peeters, B., Le Moullec, M., Albon, S. D., Herfindal, I., ... & Aanes, R. (2019). Spatial heterogeneity in climate change effects decouples the long‐term dynamics of wild reindeer populations in the high Arctic. Global Change Biology, 25(11), 3656-3668. DOI: https://doi.org/10.1111/gcb.14761
Hiba, Khan., Christos, Tsagkaris., Mohammad, Yasir, Essar., Shoaib, Ahmad. (2021). Impact of climate change on health in Karachi, Pakistan. doi: 10.1016/J.JOCLIM.2021.100013
Hipel, K. W., & McLeod, A. I. (1994). Time series modelling of water resources and environmental systems. Elsevier.
Hussain, A., Cao, J., Ali, S., Muhammad, S., Ullah, W., Hussain, I., ... & Zhou, J. (2022). Observed trends and variability of seasonal and annual precipitation in Pakistan during 1960–2016. International Journal of Climatology, 42(16), 8313-8332. DOI: https://doi.org/10.1002/joc.7709
Hussain, A., Cao, J., Ali, S., Ullah, W., Muhammad, S., Hussain, I., ... & Zhou, J. (2022). Wavelet coherence of monsoon and large‐scale climate variabilities with precipitation in Pakistan. International Journal of Climatology, 42(16), 9950-9966. DOI: https://doi.org/10.1002/joc.7874
Hussain, S., Khan, F., Cao, W., Wu, L., & Geng, M. (2016). Seed priming alters the production and detoxification of reactive oxygen intermediates in rice seedlings grown under sub-optimal temperature and nutrient supply. Frontiers in plant science, 7, 439. DOI: https://doi.org/10.3389/fpls.2016.00439
Hyndman, R. J., & Athanasopoulos, G. (2018). Forecasting: principles and practice. OTexts.
Jain, S., Rathee, S., Kumar, A., Sambasivam, A., Boadh, R., Choudhary, T., ... & Singh, P. K. (2022). Prediction of temperature for various pressure levels using ANN and multiple linear regression techniques: A case study. Materials Today: Proceedings, 56, 194-199. DOI: https://doi.org/10.1016/j.matpr.2022.01.067
Khan, A., Khan, S., Khan, M. A., Qamar, Z., & Waqas, M. (2015). The uptake and bioaccumulation of heavy metals by food plants, their effects on plants nutrients, and associated health risk: a review. Environmental science and pollution research, 22, 13772-13799. DOI: https://doi.org/10.1007/s11356-015-4881-0
Maryam, Salma, Babar., Saema, Tazyeen. Morice, C. P., Kennedy, J. J., Rayner, N. A., & Jones, P. D. (2012). Quantifying uncertainties in global and regional temperature change using an ensemble of observational estimates: The HadCRUT4 data set. Journal of Geophysical Research: Atmospheres, 117(D8). DOI: https://doi.org/10.1029/2011JD017187
Maryam, Salma, Babar., Saema, Tazyeen., Hiba, Khan., Christos, Tsagkaris., Mohammad, Yasir, Essar., Shoaib, Ahmad. (2021). Impact of climate change on health in Karachi, Pakistan. doi: 10.1016/J.JOCLIM.2021.100013 DOI: https://doi.org/10.1016/j.joclim.2021.100013
Muhammad, Atif, Idrees., Syed, Ahmed, Hassan., Muhammad, Arif, Hussain. (2023). Analysis of Stochastic Patterns of Daily Minimum Extreme Temperature of Karachi in Global Climate Change Perspective. Proceedings of the Pakistan Academy of Sciences: A. Physical and Computational Sciences, doi: 10.53560/ppasa(59-4)801 DOI: https://doi.org/10.53560/PPASA(59-4)801
Nury, A.H., Hasan, K. and Alam, M.J.B. (2017). Comparative study of wavelet- ARIMA and wavelet-ANN models for temperature time series data in northeastern Bangladesh. Journal of King Saud University-Science, 29(1), 47-61. DOI: https://doi.org/10.1016/j.jksus.2015.12.002
Shumway, R. H., Stoffer, D. S., Shumway, R. H., & Stoffer, D. S. (2017). ARIMA models. Time series analysis and its applications: DOI: https://doi.org/10.1007/978-3-319-52452-8
Vambol, S., Soomro, R., Ghauri, S. P., Marri, A. A., Dung, H. T., Manzoor, N., ... & Lutsenko, Y. (2023). Viable forecasting monthly weather data using time series methods. Ecological Questions, 34(1), 117-126. DOI: https://doi.org/10.12775/EQ.2023.003
Wang, W., & Guo, Y. (2009, October). Air pollution PM2. 5 data analysis in Los Angeles long beach with seasonal ARIMA model. In 2009 international conference on energy and environment technology (Vol. 3, pp. 7-10). IEEE. DOI: https://doi.org/10.1109/ICEET.2009.468
Mir, B. I. (2019). An Overview of Corporate Social Responsibility in the Hospitality and Tourism Sector of Pakistan. UW Journal of Management Sciences, 3(2), 1-14.
Nadeem, M. U., Waheed, Z., Ghaffar, A. M., Javaid, M. M., Hamza, A., Ayub, Z., ... & Masood, K. (2022). Application of HEC-HMS for flood forecasting in hazara catchment Pakistan, south Asia. Int. J. Hydrol, 6, 7-12. DOI: https://doi.org/10.15406/ijh.2022.06.00296
Copyright (c) 2024 Misbah Rashid, Muhammad Imran Afzal, Muhammad Arslan
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
CSRC Publishing and JBSEE adhere to Creative Commons Attribution-Non Commercial 4.0 International License. The authors submitting and publishing in JBSEE agree to the copyright policy under creative common license 4.0 (Attribution-Non Commercial 4.0 International). Under this license, the authors published in JBSEE retain the copyright including publishing rights of their scholarly work and agree to let others remix, tweak, and build upon their work non-commercially. All other authors using the content of SBSEE are required to cite author(s) and publisher in their work. CSRC Publishing and JBSEE follow an Open Access Policy for copyright and licensing.